49 research outputs found

    TP63 is implicated in apoptotic dysregulation in melanoma

    Get PDF
    PhDCutaneous melanoma is an aggressive malignancy accounting for 4% of skin cancers but 80% of all skin-cancer related deaths. Its incidence is rapidly rising and advanced disease is notoriously treatment-resistant. The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterised. Mutations in TP53 occur infrequently and are not critical for tumour development, yet the TP53 apoptotic pathway is abrogated; this may alternatively result from TP53 pathway defects or from alterations in other members of the TP53 family, including the TP53 homologue, TP63. The hypothesis of this thesis was that TP63 has an anti-apoptotic role in melanoma and is responsible for mediating chemoresistance. The primary aims were to investigate the biological role of TP63 in melanoma, to explore regulation of p63 expression and to understand its role in apoptosis and dysregulation of the TP53 apoptotic pathway in melanoma. Although p63 was not expressed in primary melanocytes, upregulation of both p63 mRNA and protein was observed in melanoma cell lines and tissue samples. This is the first report of significant p63 expression in this lineage. Furthermore, aberrant cytoplasmic p63 expression significantly correlated with poor overall outcome in melanoma patients. Multiple possible mechanisms were demonstrated to regulate TP63 expression in melanoma, including epigenetic modulation, microRNA regulation of gene transcription and proteosome-dependent stability of p63 protein. In response to genotoxic stress, endogenous p63 isoforms were stabilised in both nuclear and mitochondrial subcellular compartments. Translocation of p63 to the mitochondria occurred through a co-dependent process with p53 but accumulation of wt-p53 in the nucleus was inhibited by p63. Using RNAi technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance in melanoma. In addition, the truncated variant, ΔNp63, was enriched in a subset of melanomas expressing CD133, pointing to an anti-apoptotic role for p63 in putative cancer stem cells in this aggressive tumour. Taken together, these data suggest that in melanoma, p63 is an oncogene which contributes to dysregulation of wt-p53 function and has an important role in mediating chemoresistance. Ultimately, these observations may provide the rationale for novel approaches aimed at sensitising advanced melanoma to chemotherapeutic agents

    Exfoliative cytology for diagnosing basal cell carcinoma and other skin cancers in adults

    Get PDF
    Background: Early accurate detection of all skin cancer types is essential to guide appropriate management and to reduce morbidity and improve survival. Basal cell carcinoma (BCC) is usually localised to the skin with potential to infiltrate and damage surrounding tissue, while cutaneous squamous cell carcinoma (cSCC) and melanoma have a much higher potential to metastasise and ultimately lead to death. Exfoliative cytology is a non–invasive test that uses the Tzanck smear technique to identify disease by examining the structure of cells obtained from scraped samples. This simple procedure is a less invasive diagnostic test than a skin biopsy, and for BCC has the potential to provide an immediate diagnosis that avoids an additional visit to clinic to receive skin biopsy results. This may benefit patients scheduled for either Mohs micrographic surgery or non–surgical treatments such as radiotherapy. A cytology scrape can never give the same information as a skin biopsy, however, so it is important to know more about which skin cancer situations it may be helpful.Objectives: The primary objective was to determine the diagnostic accuracy of exfoliative cytology for the detection of basal cell carcinoma (BCC) in adults. Secondary objectives were to determine diagnostic accuracy for the detection of i) cutaneous squamous cell carcinoma, ii) invasive melanoma and atypical intraepidermal melanocytic variants, and iii) any skin cancer, including keratinocyte skin cancer, invasive melanoma and atypical intraepidermal melanocytic variants, or any other skin cancer.Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We also studied the reference lists of published systematic review articles.Selection criteria: Studies evaluating exfoliative cytology in adults with lesions suspicious for BCC, cSCC or melanoma, compared with a reference standard of histological confirmation.Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Where possible we estimated summary sensitivities and specificities using the bivariate hierarchical model.Main results: This review reports on nine studies with a total of 1655 lesions including 1120 BCCs (14 datasets), 401 lesions with 44 cSCCs (two datasets), and 200 lesions with 10 melanomas (one dataset). Three of these datasets (one each for BCC, melanoma, and any malignant condition) were derived from one study which also performed a direct comparison with dermoscopy. Studies were of moderate to poor quality providing inadequate descriptions of participant selection, thresholds used to make cytological and histological diagnoses, and blinding. Reporting of patients’ prior referral pathways was particularly poor, as were descriptions of the cytodiagnostic criteria used to make diagnoses. No studies evaluated the use of exfoliative cytology as a primary diagnostic test for detecting BCC or other skin cancers in lesions suspicious for skin cancer. Pooled data from seven studies using standard cytomorphological criteria (but various stain methods) to detect BCC in patients with a high clinical suspicion of BCC estimated the sensitivity and specificity of exfoliative cytology as 97.5% (95% CI: 94.5 to 98.9%) and 90.1% (95% CI: 81.1 to 95.1%) respectively. When applied to a hypothetical population of 1000 clinically suspected BCC lesions with a median observed BCC prevalence of 86%, exfoliative cytology would miss 21 BCCs and would lead to 14 false positive diagnoses of BCC. No false positive cases were histologically confirmed to be melanoma. Insufficient data are available to make summary statements regarding the accuracy of exfoliative cytology to detect melanoma or cSCC, or its accuracy compared to dermoscopy.Authors' conclusions: The utility of exfoliative cytology for the primary diagnosis of skin cancer is unknown, as all included studies focused on the use of this technique for confirming strongly suspected clinical diagnoses. For the confirmation of BCC in lesions with a high clinical suspicion, there is evidence of high sensitivity and specificity for exfoliative cytology. Since decisions to treat low riskBCCs are unlikely in practice to require diagnostic confirmation given that clinical suspicion is already high, exfoliative cytology might be most useful for cases of BCC where the treatments being contemplated require a tissue diagnosis (e.g. radiotherapy). The small number of included studies, poor reporting and varying methodological quality means that no strong conclusions can currently be drawn to guide clinical practice. Despite insufficient data on the use of cytology for cSCC or melanoma, it is unlikely that cytology would be useful in these scenarios since preservation of the architecture of the whole lesion that would be available from a biopsy provides crucial diagnostic information. Given the paucity of good quality data, appropriately designed prospective comparative studies may be required to evaluate both the diagnostic value of exfoliative cytology by comparison to dermoscopy, and its confirmatory value in adequately reported populations with a high probability of BCC scheduled for further treatment requiring a tissue diagnosis

    Reflectance confocal microscopy for diagnosising keratinocyte skin cancers in adults

    Get PDF
    Background Early accurate detection of all skin cancer types is important to guide appropriate management and to improve morbidity and survival. Basal cell carcinoma (BCC) is usually a localised skin cancer but with potential to infiltrate and damage surrounding tissue, whereas squamous cell carcinoma (cSCC) and melanoma are higher risk skin cancers with the potential to metastasise and ultimately lead to death. When used in conjunction with clinical or dermoscopic suspicion of malignancy, or both, reflectance confocal microscopy (RCM) may help to identify those eligible for non-surgical treatment without the need for a diagnostic biopsy, particularly in people with suspected BCC. Any potential benefit must be balanced against the risk of any misdiagnoses. Objectives 1) To determine the diagnostic accuracy of RCM for the detection of BCC, cSCC, or any skin cancer in adults with a) suspicious lesion and b) lesions that are difficult to diagnose (equivocal); and 2) to compare its accuracy with that of usual practice (visual inspection or dermoscopy, or both). Search methods We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria Studies of any design that evaluated the accuracy of RCM alone, or RCM in comparison to visual inspection or dermoscopy, or both, in adults with lesions suspicious for skin cancer compared with a reference standard of either histological confirmation or clinical follow-up, or both. Data collection and analysis Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities using the bivariate hierarchical model. For computation of likely numbers of true positive, false positive, false negative, and true negative findings in the'Summary of findings' tables, summary sensitivity and specificity estimates were applied to lower quartile, median and upper quartiles of the prevalence observed in the study groups. We also investigated the impact of observer experience. Main results Ten studies reporting on a total of 11 study cohorts were included. All 11 cohorts reported data for the detection of BCC, including 2037 lesions (464 with BCC); and four cohorts reported data for the detection of cSCC, including 834 lesions (71 with cSCC). Only one study also reported data for the detection of BCC or cSCC using dermoscopy, limiting comparisons between RCM and dermoscopy. Studies were at high or unclear risk of bias across almost all methodological quality domains, and were of high or unclear concern regarding applicability of the evidence. Selective participant recruitment, unclear blinding of the reference test, and exclusions due to image quality or technical difficulties were observed. It is unclear whether studies are representative of populations eligible for testing with RCM, and test interpretation was often undertaken using images, remotely from the patient and the interpreter blinded to clinical information that would normally be available in practice. Meta-analysis found RCM to be more sensitive but less specific for the detection of BCC in studies of participants with equivocal lesions (sensitivity 94%, 95% CI 79% to 98%; specificity 85%, 95% CI 72% to 92%; n = 3 studies) compared to studies that included any suspicious lesion (sensitivity 76%, 95% CI 45% to 92%; specificity 95%, 95% CI 66% to 99%; n = 4 studies), although confidence intervals were wide. At the median prevalence of disease of 12.5% observed in studies including any suspicious lesion, applying these results to a hypothetical population of 1000 lesions results in 30 BCCs missed with 44 false positive results (lesions misdiagnosed as BCCs). At the median prevalence of disease of 15% observed in studies of equivocal lesions, 9 BCCs would be missed with 128 false positive results in a population of 1000 lesions. Across both sets of studies, up to 15% of these false positive lesions were observed to be melanomas mistaken for BCCs. There was some suggestion of higher sensitivities in studies with more experienced observers. Summary sensitivity and specificity could not be estimated for the detection of cSCC due to paucity of data. Authors' conclusions There is insufficient evidence for the use of RCM for the diagnosis of BCC or cSCC in either population group. A possible role for RCM in clinical practice is as a tool to avoid diagnostic biopsies in lesions with a relatively high clinical suspicion of BCC. The potential for, and consequences of, misclassification of other skin cancers such as melanoma as BCCs requires further research. Importantly, data are lacking that compare RCM to standard clinical practice (with or without dermoscopy)

    Exfoliative cytology for the diagnosis of basal cell carcinoma and other skin cancers in adults

    Get PDF
    Background: Early accurate detection of all skin cancer types is essential to guide appropriate management and to reduce morbidity and improve survival. Basal cell carcinoma (BCC) is usually localised to the skin with potential to infiltrate and damage surrounding tissue, while cutaneous squamous cell carcinoma (cSCC) and melanoma have a much higher potential to metastasise and ultimately lead to death. Exfoliative cytology is a non–invasive test that uses the Tzanck smear technique to identify disease by examining the structure of cells obtained from scraped samples. This simple procedure is a less invasive diagnostic test than a skin biopsy, and for BCC has the potential to provide an immediate diagnosis that avoids an additional visit to clinic to receive skin biopsy results. This may benefit patients scheduled for either Mohs micrographic surgery or non–surgical treatments such as radiotherapy. A cytology scrape can never give the same information as a skin biopsy, however, so it is important to know more about which skin cancer situations it may be helpful. Objectives: The primary objective was to determine the diagnostic accuracy of exfoliative cytology for the detection of basal cell carcinoma (BCC) in adults. Secondary objectives were to determine diagnostic accuracy for the detection of i) cutaneous squamous cell carcinoma, ii) invasive melanoma and atypical intraepidermal melanocytic variants, and iii) any skin cancer, including keratinocyte skin cancer, invasive melanoma and atypical intraepidermal melanocytic variants, or any other skin cancer. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We also studied the reference lists of published systematic review articles. Selection criteria: Studies evaluating exfoliative cytology in adults with lesions suspicious for BCC, cSCC or melanoma, compared with a reference standard of histological confirmation. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Where possible we estimated summary sensitivities and specificities using the bivariate hierarchical model. Main results: This review reports on nine studies with a total of 1655 lesions including 1120 BCCs (14 datasets), 401 lesions with 44 cSCCs (two datasets), and 200 lesions with 10 melanomas (one dataset). Three of these datasets (one each for BCC, melanoma, and any malignant condition) were derived from one study which also performed a direct comparison with dermoscopy. Studies were of moderate to poor quality providing inadequate descriptions of participant selection, thresholds used to make cytological and histological diagnoses, and blinding. Reporting of patients’ prior referral pathways was particularly poor, as were descriptions of the cytodiagnostic criteria used to make diagnoses. No studies evaluated the use of exfoliative cytology as a primary diagnostic test for detecting BCC or other skin cancers in lesions suspicious for skin cancer. Pooled data from seven studies using standard cytomorphological criteria (but various stain methods) to detect BCC in patients with a high clinical suspicion of BCC estimated the sensitivity and specificity of exfoliative cytology as 97.5% (95% CI: 94.5 to 98.9%) and 90.1% (95% CI: 81.1 to 95.1%) respectively. When applied to a hypothetical population of 1000 clinically suspected BCC lesions with a median observed BCC prevalence of 86%, exfoliative cytology would miss 21 BCCs and would lead to 14 false positive diagnoses of BCC. No false positive cases were histologically confirmed to be melanoma. Insufficient data are available to make summary statements regarding the accuracy of exfoliative cytology to detect melanoma or cSCC, or its accuracy compared to dermoscopy. Authors' conclusions: The utility of exfoliative cytology for the primary diagnosis of skin cancer is unknown, as all included studies focused on the use of this technique for confirming strongly suspected clinical diagnoses. For the confirmation of BCC in lesions with a high clinical suspicion, there is evidence of high sensitivity and specificity for exfoliative cytology. Since decisions to treat low risk BCCs are unlikely in practice to require diagnostic confirmation given that clinical suspicion is already high, exfoliative cytology might be most useful for cases of BCC where the treatments being contemplated require a tissue diagnosis (e.g. radiotherapy). The small number of included studies, poor reporting and varying methodological quality means that no strong conclusions can currently be drawn to guide clinical practice. Despite insufficient data on the use of cytology for cSCC or melanoma, it is unlikely that cytology would be useful in these scenarios since preservation of the architecture of the whole lesion that would be available from a biopsy provides crucial diagnostic information. Given the paucity of good quality data, appropriately designed prospective comparative studies may be required to evaluate both the diagnostic value of exfoliative cytology by comparison to dermoscopy, and its confirmatory value in adequately reported populations with a high probability of BCC scheduled for further treatment requiring a tissue diagnosis

    High frequency ultrasound for the diagnosis of skin cancer in adults

    Get PDF
    Background: Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Ultrasound is a non-invasive imaging technique which relies on the measurement of sound wave reflections from the tissues of the body. At lower frequencies, the deeper structures of the body such as the internal organs can be visualised, while high frequency ultrasound (HFUS) with transducer frequencies of at least 20MHz, has a much lower depth of tissue penetration but produces a higher resolution image of tissues and structures closer to the skin surface. Used in conjunction with clinical or dermoscopic examination of suspected skin cancer, or both, HFUS may offer additional diagnostic information compared to other technologies. Objectives: To determine the diagnostic accuracy of HFUS to assist in the diagnosis of (a) melanoma and intraepidermal melanocytic variants, (b) cutaneous squamous cell carcinoma (cSCC), and (c) basal cell carcinoma (BCC) in adults. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies evaluating HFUS (>= 20 MHz) in adults with lesions suspicious for melanoma, cSCC or BCC, compared with a reference standard of histological confirmation or clinical follow-up. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and poor quality of studies, no meta-analysis was undertaken for this review. For illustrative purposes, estimates of sensitivity and specificity were plotted on coupled forest plots. Main results: Six studies were included, providing 29 datasets, 20 for diagnosis of melanoma (1125 lesions and 242 melanomas) and 9 for diagnosis of BCC (993 lesions and 119 BCCs). No data relating to the diagnosis of cSCC were identified. Studies were generally poorly reported limiting judgements of methodological quality. Half of studies did not set out to establish test accuracy and all should be considered preliminary evaluations of the potential usefulness of HFUS. There were particularly high concerns for applicability of findings due to selective study populations and data driven thresholds for test positivity. Studies reporting qualitative assessments of HFUS images excluded up to 22% of lesions (including some melanomas) due to them not being visualised by the test. Derived sensitivities for qualitative HFUS characteristics were at least 83% (95% CI 75% to 90%) for the detection of melanoma; the combination of three features (lesions appearing hypoechoic, homogenous and well defined) demonstrating 100% sensitivity in two studies, with variable corresponding specificities of 33% (95% CI 20% to 48%) and 73% (95% CI 57% to 85%) (Lower limits of the 95% CIs for sensitivities were 94% and 82% respectively). Quantitative measurement of HFUS outputs in two studies enabled decision thresholds to be set to achieve 100% sensitivity; specificities were 93% (95% CI 77% to 99%) and 65% (95% CI 51% to 76%). It was not possible to make summary statements regarding HFUS accuracy for the diagnosis of BCC due to highly variable sensitivities and specificities. Authors' conclusions: Insufficient data are available on the potential value of HFUS in the diagnosis of melanoma or BCC. Given the between study heterogeneity, unclear to low methodological quality and limited volume of evidence, no implications for practice can be drawn. The main value of the preliminary studies included may be in provision of guidance on the possible components of future diagnostic rules for diagnosis of melanoma or BCC using HFUS that require future evaluation. A prospective evaluation of HFUS added to visual inspection and dermoscopy alone in a standard health care setting with a clearly defined and representative population of participants would be required for a full and proper evaluation of accuracy

    Dermoscopy, with and without visual inspection, for the diagnosis of melanoma in adults

    Get PDF
    Background: Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Although history-taking and visual inspection of a suspicious lesion by a clinician are usually the first in a series of ‘tests’ to diagnose skin cancer, dermoscopy has become an important tool to assist diagnosis by specialist clinicians and is increasingly used in primary care settings. Dermoscopy is a magnification technique using visible light that allows more detailed examination of the skin compared to examination by the naked eye alone. Establishing the additive value of dermoscopy over and above visual inspection alone across a range of observers and settings is critical to understanding its contribution for the diagnosis of melanoma and to future understanding of the potential role of the growing number of other highresolution image analysis techniques. Objectives: To determine the diagnostic accuracy of dermoscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults, and to compare its accuracy with that of visual inspection alone. Studies were separated according to whether the diagnosis was recorded face-to-face (in-person) or based on remote (image-based) assessment. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies of any design that evaluated dermoscopy in adults with lesions suspicious for melanoma, compared with a reference standard of either histological confirmation or clinical follow-up. Data on the accuracy of visual inspection, to allow comparisons of tests, was included only if reported in the included studies of dermoscopy. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated accuracy using hierarchical summary ROC methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of sensitivity at the point on the SROC curve with 80% fixed specificity and values of specificity with 80% fixed sensitivity. We investigated the impact of in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; observer expertise; and dermoscopy training. Main results: A total of 104 study publications reporting on 103 study cohorts with 42,788 lesions (including 5700 cases) were included, providing 354 datasets for dermoscopy. The risk of bias was mainly low for the index test and reference standard domains and mainly high or unclear for participant selection and participant flow. Concerns regarding the applicability of study findings were largely scored as ‘High’ concern in three of four domains assessed. Selective participant recruitment, lack of reproducibility of diagnostic thresholds and lack of detail on observer expertise were particularly problematic. The accuracy of dermoscopy for the detection of invasive melanoma or atypical intraepidermal melanocytic variants was reported in 86 datasets; 26 for evaluations conducted in-person (dermoscopy added to visual inspection) and 60 for image-based evaluations (diagnosis based on interpretation of dermoscopic images). Analyses of studies by prior testing revealed no obvious effect on accuracy; analyses were hampered by the lack of studies in primary care, lack of relevant information and the restricted inclusion of lesions selected for biopsy or excision. Accuracy was higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio (RDOR) of 4.6; 95% CI 2.4, 9.0, P<0.001). Accuracy was compared for (a) in-person evaluations of dermoscopy (26 evaluations; 23,169 lesions and 1664 melanomas) versus visual inspection alone (13 evaluations; 6740 lesions and 459 melanomas) and for (b) image-based evaluations of dermoscopy (60 evaluations; 13,475 lesions and 2851 melanomas) versus image-based visual inspection (11 evaluations; 1740 lesions and 305 melanomas). For both comparisons, meta-analysis found dermoscopy to be more accurate than visual inspection alone, with RDORs of (a) 4.7 (95% CI: 3.0 to 7.5; P < 0.001) and (b) 5.6 (95% CI: 3.7 to 8.5; P < 0.001). These effects correspond to predicted differences in sensitivity of (a) 16% (95% CI: 8%, 23%) (92% for dermoscopy+visual inspection vs 76% for visual inspection) and (b) 35% (95% CI 24% to 46%) (81% for dermoscopy vs 47% for visual inspection) at a fixed specificity of 80%; and topredicted differences in specificity of (a) 20% (95% CI 7%, 33) (95% for dermoscopy plus visual inspection vs 75% for visual inspection) and (b) 40% (95% CI 27, 57) (82% for dermoscopy vs 42% for visual inspection) at a fixed sensitivity of 80%. Using the median prevalence of disease in each set of studies ((a) 12% for in-person and (b) 24% for image-based) for a hypothetical population of 1000 lesions, an increase in sensitivity of (a) 16% (in-person) and (b) 35% (image-based) from using dermoscopy at a fixed specificity of 80% equates to a reduction in the number of melanomas missed of (a) 19 and (b) 81 with (a) 176 and (b) 152 false positive results. An increase in specificity of (a) 20% (in-person) and (b) 40% (image-based) at a fixed sensitivity of 80% equates to a reduction in the number of unnecessary excisions from using dermoscopy of (a) 176 and (b) 304 with (a) 24 and (b) 48 melanomas missed. The use of a named or published algorithm to assist dermoscopy interpretation (as opposed to no reported algorithm or reported use of pattern analysis) had no significant impact on accuracy either for in-person (RDOR 1.4, 95% CI 0.34, 5.6; P=0.17) or image-based (RDOR 1.4, 95% CI 0.60, 3.3; P=0.22) evaluations. This result was supported by subgroup analysis according to algorithm used. Higher accuracy for observers reported as having high experience and for those classed as ‘expert consultants’ in comparison to those considered to have less experience in dermoscopy was observed, particularly for image-based evaluations. Evidence for the effect of dermoscopy training on test accuracy was very limited but suggested associated improvements in sensitivity. Authors' conclusions: Despite the observed limitations in the evidence base, dermoscopy is a valuable tool to support the visual inspection of a suspicious skin lesion for the detection of melanoma and atypical intraepidermal melanocytic variants, particularly in referred populations and in the hands of experienced users. Data to support its use in primary care is limited however it may assist in triaging suspicious lesions for urgent referral when employed by suitably trained clinicians. Formal algorithms may be of most use for dermoscopy training purposes and for less expert observers, however reliable data comparing approaches using dermoscopy in-person are lacking

    The use of teledermatology for the diagnosis of skin cancer in adults

    Get PDF
    Background: Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Teledermatology provides a way for generalist clinicians to access the opinion of a specialist dermatologist for skin lesions that they consider to be suspicious without referring the patients concerned through the normal referral pathway. Teledermatology consultations can be ‘store-and-forward’ with electronic digital images of a lesion sent to a dermatologist for review at a later time, or can be live and interactive consultations using video conferencing to connect the patient, referrer and dermatologist in real time. Objectives: To determine the diagnostic accuracy of teledermatology for the detection of any skin cancer (melanoma, BCC or cSCC) in adults, and to compare its accuracy with that of in-person diagnosis. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies evaluating skin cancer diagnosis for teledermatology alone, or in comparison with face-to-face diagnosis by a specialist clinician, compared with a reference standard of histological confirmation or clinical follow-up and expert opinion. Studies evaluating the referral accuracy of teledermatology compared with a reference standard of face-to-face diagnosis by a specialist clinician were also included. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition of any skin cancer was missing. Data permitting, we estimated summary sensitivities and specificities using the bivariate hierarchical model. Due to scarcity of data, no covariate investigations were undertaken for this review. For illustrative purposes, estimates of sensitivity and specificity were plotted on coupled forest plots for diagnostic threshold and target condition under consideration. Main results: Twenty-two studies were included reporting diagnostic accuracy data for 4057 lesions and 879 malignant cases (16 studies) and referral accuracy data for reported data for 1449 lesions and 270 ‘positive’ cases as determined by the reference standard face-to-face decision (six studies). Methodological quality was variable with poor reporting hindering assessment. The overall risk of bias was rated as high or unclear for participant selection, reference standard and participant flow and timing in at least half of all studies; the majority were considered at low risk of bias for the index test. The applicability of study findings were of high or unclear concern for the majority of studies in all domains assessed due to the recruitment of study participants from secondary care settings or specialist clinics rather than from the primary or community-based settings in which teledermatology is more likely to be used and due to the acquisition of lesion images by dermatologists or in specialist imaging units rather than by primary care clinicians. Seven studies provided data for the primary target condition of any skin cancer (1588 lesions and 638 malignancies). For the correct diagnosis of lesions as malignant using photographic images, summary sensitivity was 94.9% (95% CI 90.1 to 97.4%) and summary specificity 84.3% (95% CI 48.5 to 96.8%) (from four studies). Individual study estimates using dermoscopic images or a combination of photographic and dermoscopic images generally suggested similarly high sensitivities with highly variable specificities. Limited comparative data suggested similar diagnostic accuracy between teledermatology assessment and in-person diagnosis by a dermatologist; however, data were too scarce to draw firm conclusions. For the detection of invasive melanoma or atypical intraepidermal melanocytic variants both sensitivities and specificities were more variable. Sensitivities ranged from 59% (95% CI 42% to 74%) to 100% (95% CI 54% to 100%) and specificities from 30% (95% CI 22% to 40%) to 100% (95% CI 93% to 100%), with reported diagnostic thresholds including the correct diagnosis of melanoma, classification of lesions as ‘atypical’ or ‘typical as well as the decision to refer or to excise a lesion. Referral accuracy data comparing teledermatology against a face-to-face reference standard suggested good agreement for lesions considered to require some positive action by face to face assessment (sensitivities of over 90%). For lesions considered of less concern when assessed face-to-face (e.g. for those not recommended for excision or referral), agreement was more variable with teledermatology specificities ranging from 57% (95% CI 39 to 73%) to 100% (95% CI 86% to 100%), suggesting that remote assessment is more likely recommend excision, referral or follow-up compared to in-person decisions. Authors' conclusions: Studies were generally small and heterogeneous and methodological quality was difficult to judge due to poor reporting. Bearing in mind concerns regarding the applicability of study participants and of lesion image acquisition in specialist settings, our results suggest that teledermatology can correctly identify the majority of malignant lesions. Using a more widely defined threshold to identify ‘possibly’ malignant cases or lesions that should be considered for excision is likely to appropriately triage those lesions requiring face-to-face assessment by a specialist. Despite the increasing use of teledermatology on an international level, the evidence base to support its ability to accurately diagnose lesions and to triage lesions from primary to secondary care is lacking and further prospective and pragmatic evaluation is needed

    Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma

    Get PDF
    Background: Melanoma accounts for a small proportion of all skin cancer cases but is responsible for the majority of skin cancer-related deaths. Early detection and treatment can improve survival. Smartphone applications are readily accessible and potentially offer an instant risk assessment of the likelihood of malignancy, so that the right people seek further medical attention from a clinician for more detailed assessment of the lesion. There is, however, a risk that melanomas will be missed and treatment delayed if the application reassures the user that their lesion is low risk. Objectives: To determine the diagnostic accuracy of smartphone applications to rule out cutaneous invasive melanoma and intraepidermal melanocytic variants in adults with concerns about suspicious skin lesions. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies of any design evaluating smartphone applications intended for use by individuals in a community setting who have lesions that might be suspicious for melanoma or intraepidermal melanocytic variants compared with a reference standard of histological confirmation or clinical follow-up and expert opinion. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and poor quality of studies, no meta-analysis was undertaken for this review. For illustrative purposes, estimates of sensitivity and specificity were plotted on coupled forest plots for each application under consideration. Main results: This review reports on two cohorts of lesions published in two studies. Both studies were at high risk of bias from selective participant recruitment, and high rates of non-evaluable images. Concerns about applicability of findings were high due to inclusion only of lesions already selected for excision in a dermatology clinic setting, and image acquisition by clinicians rather than by smartphone app users. Data for five mobile phone applications were reported for 332 suspicious skin lesions with 86 melanomas across the two studies. Across the four artificial intelligence-based applications which classified lesion images (photographs) as melanomas (one application) or as high risk or ‘problematic’ lesions (three applications) using a pre-programmed algorithm, sensitivities ranged from 7% (95% CI: 2%, 16%) to 73% (95% CI: 52%, 88%) and specificities from 37% (95% CI: 29% to 46%) to 94% (95% CI: 87%, 97%). The single application using store-and-forward review of lesion images by a dermatologist had a sensitivity of 98% (95% CI: 90%, 100%) and specificity 30% (95% CI: 22%, 40%). The number of test failures (lesion images analysed by the applications but classed as ‘not evaluable’ and excluded by the study authors) ranged from 3 to 31 (or 2% to 18% of lesions analysed). The store-and-forward application had one of the highest rates of test failure (15%). At least one melanoma was classed as ‘not evaluable’ in three of the four application evaluations. Authors' conclusions: Smartphone applications using artificial intelligence-based analysis have not yet demonstrated sufficient promise in terms of accuracy, and are associated with a high likelihood of missing melanomas. Applications based on store-and-forward images could have a potential role in the timely presentation of people with potentially malignant lesions by facilitating active self-management health practices and early engagement of those with suspicious skin lesions; however, they may incur a significant increase in resource and workload. Given the paucity of evidence and low methodological quality, no implications for practice can be drawn. Nevertheless, this is a rapidly advancing field and new and better applications with robust reporting of studies could change these conclusions substantially
    corecore